3D-printed Shepp-Logan phantom as a real-world benchmark for MRI.
نویسندگان
چکیده
PURPOSE As prescribed and reliable geometrical entities, phantoms have served as indispensable validation tools in a variety of MR-related topics. Though a number of phantoms have been conceived, certain applications may warrant highly customized geometries. The purpose of this study was to demonstrate the expediency of rapid prototyping for generating a flexible class of MR-compatible phantom designs. METHODS An incarnation of the three-dimensional Shepp-Logan numerical phantom, amended for use in magnetic resonance spectroscopic imaging, was actualized using rapid prototyping. Each of the comprising compartments was filled with a solution containing prepared concentrations of common (1)H brain metabolites. Analytical Fourier expressions for the phantom class were established in order to generate a set of simulated measurements, which were then contrasted with acquired data. RESULTS Experimental results for both structural and spectroscopic imaging substantiate the suitability of rapid prototyping for MR phantom applications. The analytically simulated measurements show excellent agreement with the measured data, but also highlight the various consequences effectuated when certain aspects of the acquisition model are disregarded or misrepresented. CONCLUSION Rapid prototyping offers a novel and versatile framework for MR phantom-based validation studies. Furthermore, the growing accessibility and open-source compatibility may provide an important link between the often disparate numerical and haptic testing.
منابع مشابه
Three-dimensional analytical magnetic resonance imaging phantom in the Fourier domain.
This work presents a basic framework for constructing a 3D analytical MRI phantom in the Fourier domain. In the image domain the phantom is modeled after the work of Kak and Roberts on a 3D version of the famous Shepp-Logan head phantom. This phantom consists of several ellipsoids of different sizes, orientations, locations, and signal intensities (or gray levels). It will be shown that the k-s...
متن کاملCone-beam pseudo-lambda tomography
Abstract In this paper, for the first time we define the concept of 3D pseudo-lambda tomography based on the 3D Calderon operator, and formulate an approximate local reconstruction algorithm for cone-beam data collected along an arbitrary scanning curve. The main idea is to rewrite the filtering operator in an exact filtered-backprojection reconstruction formula as a local projection. Simulatio...
متن کاملA differentiable Shepp-Logan phantom and its applications in exact cone-beam CT.
Recently, several exact cone-beam reconstruction algorithms, such as the generalized filtered-backprojection (FBP) and backprojection-filtration (BPF) methods, have been developed to solve the long object problem. Although the well-known 3D Shepp-Logan phantom (SLP) is often used to validate these algorithms, it is deficient due to the discontinuity of the SLP. In this paper, we first construct...
متن کاملPerformance Evaluation of FBP Reconstruction in SPECT Imaging
Introduction: The purpose of this study is to define the optimal parameters for the tomographic reconstruction procedure in a routine single photon emission tomography. The Hoffman brain phantom is modified to evaluate the reconstruction method. The phantom was imaged in a 3 and 2-dimensional conformation and the results were compared. Materials and Methods: The 2D phant...
متن کاملBayesian Epipolar Geometry Estimation from Tomographic Projections
In this paper, we first show that the affine epipolar geometry can be estimated by identifying the common 1D projection from a pair of tomographic parallel projection images and the 1D affine transform between the common 1D projections. To our knowledge, the link between the common 1D projections and the affine epipolar geometry has been unknown previously; and in contrast to the traditional me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Magnetic resonance in medicine
دوره 75 1 شماره
صفحات -
تاریخ انتشار 2016